Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(9): 4412-4420, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36820858

RESUMO

Insights into carbon sources (biogenic and fossil carbon) and contents in solid waste are vital for estimating the carbon emissions from incineration plants. However, the traditional methods are time-, labor-, and cost-intensive. Herein, high-quality data sets were established after analyzing the carbon contents and infrared spectra of substantial samples using elemental analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Then, five classification and eight regression machine learning (ML) models were evaluated to recognize the proportion of biogenic and fossil carbon in solid waste. Using the optimized data preprocessing approach, the random forest (RF) classifier with hyperparameter tuning ranked first in classifying the carbon group with a test accuracy of 0.969, and the carbon contents were successfully predicted by the RF regressor with R2 = 0.926 considering performance-interpretability-computation time competition. The above proposed algorithms were further validated with real environmental samples, which exhibited robust performance with an accuracy of 0.898 for carbon group classification and an R2 value of 0.851 for carbon content prediction. The reliable results indicate that ATR-FTIR coupled with ML algorithms is feasible for rapidly identifying both carbon groups and content, facilitating the calculation and assessment of carbon emissions from solid waste incineration.

2.
Waste Manag ; 153: 20-30, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041267

RESUMO

Rapid determination of moisture content plays an important role in guiding the recycling, treatment and disposal of solid waste, as the moisture content of solid waste directly affects the leachate generation, microbial activities, pollutants leaching and energy consumption during thermal treatment. Traditional moisture content measurement methods are time-consuming, cumbersome and destructive to samples. Therefore, a rapid and nondestructive method for determining the moisture content of solid waste has become a key technology. In this work, an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and multiple machine learning methods was developed to predict the moisture content of multi-source solid waste (textile, paper, leather and wood waste). A combined model was proposed for moisture content regression prediction, and the applicability of 20 combinations of five spectral preprocessing methods and four regression algorithms were discussed to further improve the modeling accuracy. Furthermore, the prediction result based on the water-band spectra was compared with the prediction result based on the full-band spectra. The result showed that the combination model can efficiently predict the moisture content of multi-source solid waste, and the R2 values of the validation and test datasets and the root mean square error for the moisture prediction reached 0.9604, 0.9660, and 3.80, respectively after the hyperparameter optimization. The excellent performance indicated that the proposed combined models can rapidly and accurately measure the moisture content of solid waste, which is significant for the existing waste characterization scheme, and for the further real-time monitoring and management of solid waste treatment and disposal process.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Aprendizado de Máquina , Resíduos Sólidos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
3.
J Hazard Mater ; 423(Pt B): 127144, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34555763

RESUMO

During coronavirus disease 2019 pandemic, the exponential increase in clinical waste (CW) generation has caused immense burden to CW treatment facilities. Co-incineration of CW in municipal solid waste incinerator (MSWI) is an emergency treatment method. A material flow model was developed to estimate the change in feedstock characteristics and resulting acid gas emission under different CW co-incineration ratios. The ash contents and lower heating values of the feedstocks, as well as HCl concentrations in flue gas showed an upward trend. Subsequently, 72 incineration residue samples were collected from a MSWI performing co-incineration (CW ratio <10 wt%) in Wuhan city, China, followed by 20 incineration residues samples from waste that were not co-incineration. The results showed that the contents of major elements and non-volatile heavy metals in the air pollution control residues increased during co-incineration but were within the reported ranges, whereas those in the bottom ashes revealed no significant changes. The impact of CW co-incineration at a ratio <10 wt% on the distribution of elements in the incineration residues was not significant. However, increase in alkali metals and HCl in flue gas may cause potential boiler corrosion. These results provide valuable insights into pollution control in MSWI during pandemic.


Assuntos
COVID-19 , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Humanos , Incineração , Pandemias , SARS-CoV-2 , Resíduos Sólidos/análise
4.
J Hazard Mater ; 400: 123321, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947718

RESUMO

Solid waste incineration is a major emission source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The injection of N- and S-containing compounds is an effective way to suppress the formation of PCDD/Fs, but this approach is still shortcoming because additional pollutants such as NH3 and SOx are emitted. To avoid the secondary pollutions, a de novo synthesis inhibition mechanism in the presence of CaO was postulated to transform CuCl2 to CuO and deplete Cl2 and HCl. Chlorobenzenes (CBzs), which are indicators and precursors of PCDD/Fs, were adopted to prove the inhibitory effect of CaO at 400 °C, using both simulated synthetic ash and extracted air pollution control residues. As the molar ratio of CaO to CuCl2 exceeded 3, the residual carbon increased, and the inhibition efficiency of CBzs exceeded 93 %. This performance is superior to the corresponding performance of NH4H2PO4, which has been proved to be a potential inhibitor. Furthermore, with CaO, chlorides remained in the solid phase and had inactive catalytic performance; and they were the major products rather than HCl, Cl2 and Cu2OCl2. The addition of CaO during waste incineration therefore can facilitate the abatement of PCDD/Fs contamination and reduce the emissions of acid gas simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...